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Abstract 

This paper describes the systems developed by the UJS team 
for the Far-Field Speaker Verification Challenge 2020 
(FFSVC). We participate in task 1 of this challenge.  The 

performance of speaker verification is degraded by the presence 
of large amounts of reverberation and uncertain background 
noise in far-field environments. In order to solve this problem, 
we have adopted many methods, which include data 
augmentation, adversarial multi-task training, transfer learning 
and model fusion. The best single model uses ResNet34, along 
with AAM-SoftMax. Finally, using the method of model fusion, 
we achieve 0.57 minDCF in the evaluation set and the 

performance is better than baseline. 

Index Terms: Speaker Verification, Far-field, deep learning 

1. Introduction 

Speaker verification in a certain environment has achieved 
satisfactory performance.  However, in some complex scenarios, 

such as unknown noise and far-field environment, the 
performance of speaker verification is degraded. In the far-field 
environment, sound signal is reflected by obstacles to form 
reverberation, which reduces the quality of the speech signal. 
The background of the real environment contains a variety of 
noises, such as TVs, other speakers, etc. Speaker verification in 
complex environments is still challenging. Recently, speaker 
recognition databases containing complex environments [1,2] 
have been released to help researchers better study this 

challenge. 

In early work, the most dominant method of speaker validation 
is i-vector/PLDA [3], widely used in both industry and 
academia. However, this model is linear, shallow, and cannot 

be applied in complex environments. Recently, deep speaker 
embedding networks obtains better performance and gradually 
replacing i-vector/PLDA. 

X-vector [4] is a representative model of deep speaker 

embedding. It extracts speech frame-level features through 
TDNN and uses statistical pooling functions to generate 
utterance-level representations. Convolutional neural-based 
networks have also achieved good performance in speaker 
verification tasks [5]. In addition, there are LSTM-based, 
CRNN-based models that are also used for speaker validation. 

In order to improve the performance of speaker verification in 
complex environments, several approaches have been proposed 
for noise reduction and de-reverberation. Weighted prediction 
error (WPE) is an effective way to de-reverberate [6]. In [7], 
speech separation is used to reduce noise and improve the 
performance of speaker verification. There are also approaches 

that use adversarial training to generate noise-invariant, 
channel-invariant representations [8,9]. 

The Far-Field Speaker Verification Challenge 2020 (FFSVC20) 
is designed to boost the speaker verification research with 
special focus on far-field distributed microphone arrays under 
noisy conditions in real scenarios [10].  Our system pipeline 
consists of five main components, including front-end 
processing, deep speaker embedding network, back-end 

processing, Transfer learning (text-independent speaker 
verification model) and adversarial multi-task training. 

This paper is organized as follows: Section 2 describes the 
details of our submitted system. Section 3 clarifies the 

experimental results and analysis. Conclusions are drawn in 
section 4. 

2. System descriptions  

Our system consists of the following five main components, 
including front-end processing, deep speaker embedding 
network, back-end processing, transfer learning (text-
independent speaker verification model) and adversarial multi-
task training. The description of each components is as follows. 

2.1. Front-end processing 

2.1.1. Voice activity detection 

VADs are often used at the front end of various speech tasks 
because they remove the silence, reduce the amount of 
computation and improve the voice quality. In our system, all 
speech is removed from silent segments via VAD. 
We adopted the energy-based VAD method. The principle of 
energy-based VAD is that the vocal part of the speech spectrum 
tends to have a higher energy than the silent part of the 
background. 

2.1.2. Acoustic features 

The characteristics of speech signals are often reflected in the 
frequency domain, speaker verification and speech recognition 
often use time-frequency domain characteristics, such as Mel-

frequency cepstral coefficient (MFCC), Log Mel-filterbank 
energies (Fbank).  
In our system, Fbank is used as an input to the model. All 
features are extracted from 25ms windows with 10ms shift 
between frames. Each audio is converted to 64-dimensional log 
Mel-filterbank energies with cepstral filterbanks ranging from 
0 to 16000 Hz. To be able to speed up the training process, mean 
normalization is used to normalize the data. 

2.1.3. Data augmentation 

 



Although there is a large amount of training data, most of the 

data is the same piece of speech being recorded by different 
devices. Therefore, these utterances are very similar, and it is 
easy to overfit the training model. Multiple approaches to data 
augmentation need to be used. The data augmentation methods 
include mixed noise, far-field environment simulation, multi-
scale training. 
Mixing training data and noise according to a random signal-
to-noise ratio can improve sample diversity. We used three 

different types of noise (music, speech, and noise) from the 
open source noise library [11]. The signal-to-noise ratio is 
selected in the range of 5-20 db. 
Closed-field speech is simulated as far-field speech to augment 
data via pyroomacoustics [12]. The addition of far-field data 
can help the network better understand the far-filed data and 
learn about robust embedding. The parameters of the simulation 
are set to the height of the room to be 3 meters, and randomly 
select 3-12 meters as the length and width of the room. Speakers 

and microphones are randomly placed in the room. 

Different lengths of data are used as input during the training 
process. In each training process, the number of frames of 
speech randomly ranges from 80-160 frames. Different sized 

datasets help the model capture important passages in speech, 
while expanding the dataset improves the overfitting problem 
to some extent. 

2.2. Deep speaker embedding network 

As shown in Figure 1, the deep speaker model mainly consists 
of four components, including feature extraction, pooling 
module, fully connected layer and loss function. 

 

Figure 1: system architecture 

2.2.1. Feature extraction 

The feature extractor converts the speech sequences into frame-
level representations. We extract the feature extraction from 
two state-of-the-art modelings, the deep ResNet system and the 
TDNN x-vector system. 
The similar deep ResNet structure in the baseline is used as a 
feature extractor [13]. The number of channels of the residual 
block is {32-64-128-256}. The detailed configuration of the 

deep ResNet architecture is in Table 1. Some details about 
TDNN networks can be found in [7]. The difference between 
TDNN x-vector and ResNet is that the former uses TDNN and 
the latter uses convolutional networks. The implementation of 
the two architectures both use Pytorch. 

2.2.2. Pooling module 

The function of the pooling module is to convert frame-level 
speech representations into utterance-level representations. 
Recently frequently used pooling methods include Global 
average pooling (GAP), Global statistics pooling (GSP), 
Temporal attention pooling. 

The pooling module in our system uses GSP. The GSP 
calculates the mean and variance in each channel and connects 
them into vectors. More dimensions of variance than GAP, with 
better robustness in complex environments. Although the 

length of the utterance is not the same at the time of input, after 

the pooling function, all the utterance is converted to the same 
size representation. 

 Table 1: The deep ResNet and Pooling module 

Layer Output Size Structure 

Conv1 32*64*L   C(3 ∗ 3,1) 

Residual 

Layer 1 
32*64*L   [

𝐶(3 ∗ 3,1)

𝐶(3 ∗ 3,1)
]  ∗ 3  

Residual 

Layer 2 
64*32*

𝐿

2
 [

𝐶(3 ∗ 3,2)

𝐶(3 ∗ 3,1)

𝑆(1 ∗ 1,2)
] [

𝐶(3 ∗ 3,1)

𝐶(3 ∗ 3,1)
] ∗ 3 

Residual 

Layer 3 
128*16*

𝐿

4
 [

𝐶(3 ∗ 3,2)

𝐶(3 ∗ 3,1)

𝑆(1 ∗ 1,2)
] [

𝐶(3 ∗ 3,1)

𝐶(3 ∗ 3,1)
] ∗ 5 

Residual 

Layer 4 
256*8*

𝐿

8
 [

𝐶(3 ∗ 3,2)

𝐶(3 ∗ 3,1)

𝑆(1 ∗ 1,2)
] [

𝐶(3 ∗ 3,1)

𝐶(3 ∗ 3,1)
] ∗ 2 

Pooling 

module 
512 Global Statistics Pooling 

Embedding 128 Fully connected Layer 

Classifier 460 Fully connected Layer 

 

2.2.3. Loss function 

In speaker verification, a combination of SoftMax and cross-
entropy is often used as a loss function. SoftMax encourages 
separation of features between classes, but does not require 
intra-class compactness or inter-class separation. For this 
reason, SoftMax may not have learned the highly 
discriminating embedding 

Recently, AAM-SoftMax, improved from SoftMax, has been 
proposed to obtain very good performance in face verification. 
In angular space, AAM-SoftMax maximizes classification 
boundaries and can effectively reduce the intra-class distances 

and increase inter-class distances. AAM-SoftMax is defined as:  

                 
(1)                   

 

 

(2) 

 

SoftMax and AAM-SoftMax are used in our system. We 
compared their performance for the far-field speaker 
verification task.  

2.3. Back-end processing 

2.3.1. cosine similarity  

Each utterance is extracted as a 128-dimensional embedding. 

We use cosine similarity to determine the similarity between 
two embedding. 
Suppose the embedding of the registered speech is Ereg, and the 
embedding of the test speech is Etest. The cosine similarity is 
defined as:  

Score(reg,test)  =  cos(θ) =
𝐸𝑟𝑒𝑔∙𝐸𝑡𝑒𝑠𝑡

‖𝐸𝑟𝑒𝑔‖‖𝐸𝑡𝑒𝑠𝑡‖
  (3) 

       
        
          

       
      

     
        

    



2.3.2. model fusion 

We utilize model fusion at the score level. A linear model is 
used to weight the scores of different models to obtain the final 
score. The experimental results show that the model fusion 
approach is effective in improving performance. 

2.4. Transfer learning 

According to the baseline [13], Fine-tuning with a pre-trained 
text-independent speaker recognition model yields better 
results. We pre-trained the deep speaker network with larger 
scale text-independent mix-dataset (close-talk and its 
simulation data). The pre-training data contained 2015 speakers, 
including five Chinese databases from openslr.org. The five 
databases are SLR33, SLR38, SLR47, SLR62, and SLR68. The 
fine-tuning data is SLR85 dataset and the first 30 utterances of 

FFSVC 2020 training dataset. 

2.5. Adversarial multi-task training   

In the challenge task, the enrolled utterance is recorded using a 
close cellphone and the test utterance is recorded using a 

microphone array at a distance of 1 to 5 meters. There is a 
device mismatch between the enrollment and test sets. 
Meanwhile, there is variability between the far-field 
microphone arrays recording speech from different locations. 

We use an adversarial multitasking approach to address 
enrollment and test speech mismatches and far-field 
microphone locations changes. A classifier for discriminating 
devices and locations is added to the original network for 
adversarial multitasking training. Minimize the loss of speaker 
verification while maximizing the loss of the classifier for 
devices and locations during training. The goal of adversarial 
multi-task training is to make it impossible for the network to 

determine exactly which device the speech belongs to and at 
which location the microphone array is recorded.  

 

Figure 2:  Adversarial multi-task architecture 

As shown in Figure 2, Adversarial multitasking module 
requires a gradient reversal layer (GRL), a fully connected layer 
and a classifier. GRL lets the gradient computed by the 
classifier reverse back to the model, creating an adversarial 
situation between the classifier for devices and locations and 

the embedding. The proposed model is able to learn device-
invariant and position-invariant speaker representations via 
adversarial multitasking training. 

Devices and locations are jointly coded to 5 categories: close-

filed categories (High quality microphone, cellphone), far-filed 
categories (1m microphone arrays, 3m microphone arrays, 5m 
microphone arrays). 

Assuming that the loss function for speaker verification is L1 

and the loss function for classifier for devices and locations is 
L2, then the final loss function is defined as: 

L = L1 + α ∗ L2                                  (4) 

where 𝛼  is a hyper-parameter and controls the trade-off 
between the speaker verification loss and the classifier for 

devices and locations loss. 

3. Experiment 

3.1. Text-independent speaker verification training  

We train the text-independent speaker verification system using 
five open-sourced databases from openslr.org, which are the 
data allowed for this challenge. Speakers in these databases 

who have fewer than 80 utterances are deleted, and the final 
data available for training contain a total of 2015 speakers. 
Because the training set is cobbled together from multiple 
datasets, the number of utterances available for training per 
speaker is unbalanced. We sample the data balance for each 
speaker during training. In each training epoch, each speaker 
selects 10 randomly utterance for training. 
Frame-level representations are extracted using ResNet or 

TDNN, as described previously. GSP is used as pooling module. 
The loss function uses a simple SoftMax. In a training epoch, 
the number of utterances is 20,150, And each epoch takes 
approximate 100s to train on a NVIDIA TESLA P100 16GB 
device. The model was trained for 1000 epochs. The initial 
learning rate is 1e-3, decreasing to 1e-4 at 500 epochs. The 
batch-size set to 64. For each epoch, the number of frames of 
training data is randomly selected from 100-200. 

3.2. Text-dependent speaker verification training(fine-tune) 

The trained text-independent speaker model is used as a pre-
trained model. Its parameters are used as initialization 
parameters for text-dependent speaker verification. A pre-

training model is a good starting point for training and speeds 
up the training process. 
The first 30 utterances of each speaker in the official train 
dataset and the SLR85 database from openslr.org are used to 
fine-tune. The content of all utterance is "hi, mia" in Chinese or 
English. The database used for fine-tuning contained a total of 
460 speakers, with each speaker from SLR85 containing 
approximately 3900 utterances and each speaker from the 

official training set containing approximately 1200 utterances. 
The former provides 16 channels of microphone array data, 
while the latter only has 4 channels of microphone array data. 
Therefore, dataset for training is not balanced. As with text-
independent speaker identification, the data is resampled. In 
each training epoch, each speaker randomly selects 10 
utterances for training.  
Text- dependent speech is usually shorter than text-independent 
speech, thus reducing the number of frames relative to text-

independent speaker training. In each epoch, speech was 
randomly truncated or spliced into 100-140 frames. Text-
dependent speaker verification model was trained for a total of 
600 epochs. The batch-size also set to 64. The two parameters 
contained in the AAM-SoftMax are set to s = 0.2, m = 30. The 
initial learning rate is set to 1e-3, decreasing to 1e-4 at 200 
epochs and 1e-5 at 400 epochs. The model takes up 19.3M of 
storage space. 

In adversarial multitasking training, the classifier for devices 
and locations are trained, SoftMax and cross-entropy are used 

as loss functions. When the hyperparameter 𝛼 in the final loss 
function is set to 0.001, the model reaches the best performance. 

                   

            
            

 
 
 

  
               

        



Table 2: Performance of the speaker verification systems. “Model” represents the types of deep speaker embedding 

network; “TL” represents whether to use pre-trained models for transfer learning; “AMT” represents whether to use 
adversarial multi-task training. 

ID Model TL Loss function AMT 
Task1 Development set Task1 Evaluation Set 

minDCF EER minDCF EER 

1 Baseline(resnet34) Y SoftMax N 0.57 6.01% 0.62 6.37% 

2 ResNet34 N AAM-SoftMax N 0.66 7.31% - - 

3 ResNet34 Y AAM-SoftMax N 0.53 5.55% 0.61 6.41% 

4 ResNet34 Y AAM-SoftMax Y 0.51 5.37% 0.59 6.47% 

5 TDNN N SoftMax N 0.73 8.65% - - 

6 TDNN N AAM-SoftMax N 0.76 9.89% - - 

7 Fusion1(2+3+4+5) - - - 0.46 4.73% 0.57 5.83% 

8 Fusion2(2+3+4+5) - - - 0.44 4.87% 0.57 5.78% 

 

3.3. result and analysis 

The experimental results on the far-field speaker verification 
system are shown in Table 3. ID1 is the baseline model 
provided by [13] and ID2-8 is the model submitted by our team 

system. Feature extraction includes Resnet34 and TDNN, while 
a number of other configurations are also explored. For 
example, whether to use a pre-trained model for transfer 
learning, what loss function to use, whether to use adversarial 
multi-task training. 
As can be seen from the table, the TDNN-based approach is not 
as effective as the Resnet-based approach. This suggests that 
TDNN is less capable of extracting representations than ResNet 
in our speaker validation system. 

Based on the results of  ID2 and ID3, it can be found that 
transfer learning using pre-trained models is very effective. 
Knowledge learned in the pre-training model can help text-
dependent speakers learn more discriminative information. 
Text-dependent speaker verification uses the parameters of a 
pre-trained model as initialization parameters, which can speed 
up training and prevent model overfitting. 
Of all the simple models, the models with the best results is ID5. 

ID5 adds the adversarial multitasking training compared to 
model ID4. In the development set, ID5 improved minDCF by 
3.7% compared to ID4. In the evaluation set, ID5 is also better 
than ID4, improving by 3.3% in minDCF. It turns out that the 
model is made to learn to device-invariant and location-
invariant embedding using classifiers for devices and locations 
as well as GRL. Adversarial multitasking training is able to 
solve the devices mismatch problem to some extent. 

ID7 performs model fusion on the scoring results of models ID2, 
ID3, ID4, ID5. ID8 also performs fusion on the scoring results 
of models ID2, ID3, ID4, ID5. The difference between ID7 and 
ID8 is in the inputs of the scoring, the former contains 4 scores 
as inputs and the latter contains 16 scores as inputs. The reason 
for the different input sizes is that the test utterance contains 
four channels. In ID7, each sub-model averages the data from 
the four channels and computes one score, and in ID8, each sub-

model computes four scores from the four channels. As can be 
seen from the table, ID8 is better than ID7 on the minDCF of 
the development set, however, it is lower than ID7 on the EER 
metric. In the evaluation set, the effect of ID8 is slightly better 
than that of ID7 on both metrics, but the difference is not great. 
Experimental results show that model fusion can effectively 
improve the performance of the system. 
Compared with the baseline, ID8 has increased by 8.7% 

minDCF and 10.2% EER in the evaluation set. 
 

 

4. Conclusions 

This paper describes the UJS team's system for Far-Field 
Speaker Verification Challenge 2020. ResNet and TDNN are 
used as feature extractors. The results show that the ResNet-
based feature extractor works better than TDNN in our system. 
We still use two different loss functions, SoftMax and AAM-
SoftMax. For enrolling and testing speech from different 
devices and different locations between microphone arrays, 

adversarial multitasking training is used and a classifier of 
devices and locations is proposed. By maximizing the error of 
this classifier, the model is capable of generating device-
invariant and location-invariant representations. The best 
results come from scoring model fusion. This shows that model 
fusion is a great way to improve performance. In the future, we 
will further investigate the robustness of speaker verification in 
complex environments 
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