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Abstract
This paper presents speaker recognition (SR) systems submitted
by the Speech Technology Center (STC) team to the Far-Field
Speaker Verification Challenge 2020. SR tasks of the challenge
are focused on the problem of far-field text-dependent speaker
verification from single microphone array (Track 1), far-field
text-independent speaker verification from single microphone
array (Track 2) and far-field text-dependent speaker verification
from distributed microphone arrays (Track 3).

In this paper, we present techniques and ideas underlying
our best performing models. A number of experiments on x-
vector-based and ResNet-like architectures show that ResNet
topology based networks outperform x-vector-based systems.
Submitted systems are the fusions of ResNet34-based extrac-
tors, trained on 80 Log Mel-filter bank energies (MFBs) post-
processed with U-net-like voice activity detector (VAD). The
best systems for the Track 1, Track 2 and Track 3 achieved
5.08% EER and 0.500 Cmin

det , 5.39% EER and 0.541 Cmin
det and

5.53% EER and 0.458 Cmin
det on the challenge evaluation sets

respectively.
Index Terms: FFSVC, speaker recognition, deep neural net-
work, domain adaptation, neural network-based VAD.

1. System components
1.1. Feature extraction

All systems presented in this paper take 80-dimensional Log
Mel-filter Bank Energies extracted from 16kHz raw input sig-
nals as input features. We compute MFBs from the signal with
25ms frame-length and 15ms overlap.

Additionally, we use per-utterance Cepstral Mean Normal-
ization (CMN) over a 3-second sliding window over the stack
of MFBs to compensate for the channel effects and noise by
transforming data to have zero mean [1]. The VAD was used af-
ter the CMN-normalization procedure. We further apply global
mean and standard deviation (std) normalization for each utter-
ance with the pre-computed 80-dimensional vectors of means
and stds over this utterance.

1.2. Voice activity detector

In this work we explored two types of VADs for the SR task:

• energy-based VAD from the Kaldi Toolkit [2];

• neural network-based VAD.

Neural network-based VAD uses U-net architecture [3] as
a backbone and is described in more detail in our papers [4, 5].
It was trained on the large-scale dataset of telephone channel

audios (telephone part of data from the NIST SRE challenge and
our proprietary Russian speech subcorpus RusTelecom [6]). We
have found that VAD trained on telephone data produces high-
quality results for the microphone channel audios, that is the
reason why we did not train our VAD for microphone data from
scratch.

Preprocessing of VAD input data consisted of extraction
of 8kHz 23-dimensional Mel-Frequency Cepstral Coefficients
(MFCC) features from the raw signal with 25ms frame-length
and 20ms shift. We found 23-dimensional MFCCs to be a trade-
off between the quality of embeddings extracted from these fea-
tures and the speed of training and inference.

Since training and test data used for the FFSVC 2020 con-
sists of 16kHz microphone speech, VAD markup was first ex-
tracted from the 23-dimensional MFCC features, computed for
the audios down-sampled from 16kHz to 8kHz, then the resul-
tant markup was used to extract voiced frames from the 80-
dimensional MFB features calculated from the same raw wave-
form data.

1.3. Embedding extractors

We used two kinds of neural network architectures to process
acoustic features – ResNet-based and x-vector-based systems.

ResNet-based. Table 1 describes ResNet34 [7] architecture
we used. ReLU activation and batch normalization follow each
convolutional layer, and Maxout activation [8] is used for the
embedding layer. Statistics pooling layer aggregates features
over time and spectral dimensions before the segment-level em-
bedding layers. In the paper, we used several embedding ex-
tractors based on ResNet34 architecture. These extractors differ
from each in the data used for training, the type of data augmen-
tation, and the voice activity detector.

X-vector-based. We took extended TDNN-based x-vectors
[9] as a baseline. Then we removed dilations from convolu-
tional kernels to avoid the possibility for the griding artifacts
and replaced ReLU activation with its leaky version (Table 2).
Several experiments with the width and depth of the network
have shown no further improvement for the number of filters be-
yond 512 and the number of frame-level blocks (comprised of
1-dimensional convolutional layer and 1x1 1-dimensional con-
volutional layer) beyond 4. Similarly, the addition of extra fully
connected segment-level layers did not affect the verification
accuracy. It was found that after the network reaches a certain
depth, the performance tends to saturate towards mean accuracy
due to the lack of local spectral and global temporal informa-
tion in the intermediate layers. We tried to add temporal atten-
tion on the base of the Squeeze-and-Excitation (SE) block [10]
after each convolutional block to overcome the latter limitation,



Table 1: Architecture configuration of the embedding extractor
based on ResNet34

Layer name Structure Output
Input 80 MFB log-energy 80× 200× 1

Conv2D-1 3× 3, stride 1 80× 200× 32

ResNet-1
[
3× 3, 32
3× 3, 32

]
× 3, st. 1 80× 200× 32

ResNet-2
[
3× 3, 64
3× 3, 64

]
× 4, st. 2 40× 100× 64

ResNet-3
[
3× 3, 128
3× 3, 128

]
× 6, st. 2 20× 50× 128

ResNet-4
[
3× 3, 256
3× 3, 256

]
× 3, st. 2 10× 25× 256

StatsPool mean and std 20× 256
Flatten – 5120
Dense1 embedding layer 512
Dense2 output layer Nspk

however, no significant improvement over the basic version was
reached.

Table 2: Architecture configuration of the embedding extractor
based on x-vectors

Layer name Layer context Output
Input 80 MFB log-energy 80× 200

Frame1.1 [t− 2 : t− 2] 512× 200
Frame1.2 [t] 512× 200
Frame2.1 [t− 1 : t− 1] 512× 200
Frame2.2 [t] 512× 200
Frame3.1 [t− 1 : t− 1] 512× 200
Frame3.2 [t] 512× 200
Frame4.1 [t− 1 : t− 1] 512× 200
Frame4.2 [t] 512× 200
Frame5 [t] 1500× 200

StatsPool mean and std 2× 1500
Flatten – 3000
Dense1 embedding layer 512
Dense2 output layer Nspk

1.4. Domain adaptation

In this work, we utilized different domain adaptation tech-
niques:

• based on the addition of in-domain data to the training
set to fine-tune and train embedding extractor that solves
close-set speaker identification task;

• based on mean speaker embedding subtraction. The
mean vector is calculated over the training FFSVC
dataset;

• based on two mean speaker embedding subtraction. The
main idea is to calculate two vectors of mean values over
the training FFSVC dataset for the enrollment and test
files independently;

• based on MultiReader adaptation technique [11], which
was used at the embedding extractor training stage. The
main idea is to train embedding extractor using two
heads, each of which is intended to classify either a large
number of speaker IDs from out-of-domain data or a
small number of speaker IDs from in-domain data.

1.5. Multi-channel fusion

Trial pairs are constructed of single enrollment recording from
25cm distance cell phone and multiple test recordings from sin-
gle (Track 1 and Track 2) or multiple (Track 3) far-field micro-
phone array. The presence of multiple test files for the enrolled
speaker fragment allowed us to fuse information from test utter-
ances in several ways:

• by averaging all enrollment-test trials scores for each
trial;

• by choosing the maximum score from comparison set of
one enrollment embedding with all test embeddings for
each trial;

• by computing average test embedding for one trial and
comparing it with the associated enrollment embedding.

We found that embedding averaging works slightly better than
other methods in terms of verification metrics.

1.6. Back-end scoring

Cosine similarity was chosen to be used as a back-end scoring
method:

S(x1,x2) =
x1

Tx2

‖x1‖‖x2‖
, (1)

where (x1,x2) are speaker embedding vectors.

2. Datasets
We used several datasets for our experiments.

Model pre-training dataset. We used concatenated Vox-
Celeb1 and VoxCeleb2 (SLR47) [12] corpus datasets to pre-
train all our models. The overall number of speakers in the
resultant set was 7146. Augmented data was generated using
standard Kaldi augmentation recipe (reverberation, babble, mu-
sic and noise) using the freely available MUSAN and simulated
Room Impulse Response (RIR) datasets1.

Model fine-tuning dataset. We have expanded model
pre-training data with additional 2099 speakers from several
Chinese Mandarin corpora (SLR33, SLR62, SLR82, SLR85,
FFSVC train set) to add domain knowledge. We concatenated
multiple short-duration utterances of one speaker into multi-
ple larger files of 20 sec for training convenience. SLR33
and SLR62 sets were augmented similarly to VoxCeleb sets,
whereas SLR82 and SLR85 relatively noisy sets were aug-
mented only by reverberation. Both augmented and non-
augmented versions of the FFSVC train set were used in our
experiments. During the construction of the extended dataset
speaker overlaps between different datasets were take into ac-
count.

3. Experiments
3.1. Pre-training of embedding extractor

Both ResNet and x-vector-based embedding extractor mod-
els were trained on model pre-training dataset from Section 2
We performed training of our models using batches, consist-
ing of randomly sampled sequence of 200 MFB features (2s of
speech). AM-Softmax loss function [13] was taken for objec-
tive (with optimal margin and scale parameter settings fixed to
0.2 and 30 respectively). For ResNet-based models we used
Adam optimizer with the starting learning rate fixed to 0.001

1http://www.openslr.org



and divide it by ten every 2 epochs. In x-vector training, SGD
demonstrated better convergence in the combination with cyclic
learning rate scheduling policy with the minimum and maxi-
mum learning rate parameters set to 0.002 and 0.12 respectively.
During one epoch the full pass of train data was done.

3.2. Fine-tuning of embedding extractors

Fine-tuning of ResNet-based extractors was done in two steps.
First, we trained segment-level layers and newly initialized clas-
sification head, with convolutional layers frozen. Second, we
unfroze convolutional layers and re-trained the overall network
with a low learning rate. We used the FFSVC development set
and original VoxCeleb 1 test set for model validation in this
task.

The MultiReader adaptation technique [11] was used as an
alternative fine-tuning approach. We trained embedding extrac-
tor based on ResNet34 architecture using two heads. The first
head is used to classify a large number of speaker IDs from
out-of-domain data (7146 speakers from VoxCeleb1 and Vox-
Celeb2 datasets). The second head is used to classify a small
number of speaker IDs from in-domain data (120 speakers from
the FFSVC train set). Since the in-domain dataset does not con-
tain enough amount of data, training the embedding extractor
on it can lead to overfitting. Requiring the embedding extractor
to perform reasonably well also on out-of-domain data helps to
regularize the embedding extractor. We tried to minimize the
following cost function based on AM-Softmax:

L(D;W) = 0.5 · L(D1;W1) + 0.5 · L(D2;W2), (2)

where D1 and D2 are out-of-domain and in-domain data corre-
spondingly, W1 and W2 are model parameter sets that allow to
compute outputs for the first and second heads correspondingly,
D = D1 ∪D2, W = W1 ∪W2.

We used a single-headed ResNet34 model [4] trained on
original and augmented VoxCeleb1 and VoxCeleb2 datasets as
the initialization for frame-level, segment-level and the first
output layers of two-headed ResNet34 model. The first layer
and the frame level of the two-headed ResNet34 model were
frozen at the beginning of the MultiReader adaptation proce-
dure. Layer freezing was maintained until convergence and then
all layers were unfrozen and training procedure was continued
with a reduced learning rate until convergence. We used the
original and Kaldi augmented FFSVC train set in this case.

4. Results and discussion
Table 3 displays the results of experiments on several systems
developed for the Track 2 of the challenge. The performance
is measured on the FFSVC development set in terms of EER
(Equal Error Rate) and Cmin

det (Minimum Detection Cost).
The ResNet34-based system with energy VAD and no adap-

tation to the specificity of the domain was taken for the base-
line. We used only concatenated VoxCeleb1 and VoxCeleb2
datasets and its augmented versions for training our baseline
system. The maximum score fusion method mentioned in Sub-
section 1.5 was used to average information from several multi-
microphone test utterances. A number of changes were done to
the baseline system:

• the expansion of the training set and speaker IDs with
Chinese Mandarin datasets;

• the use of U-net-like VAD in training and testing stages;

Table 3: Results of our systems on FFSVC 2020 Track 2 (de-
velopment set)

ID System Properties Cmin
det EER

1 ResNet34

initial model,
energy VAD,
max score
for test files

0.820 8.95

2 ResNet34 ID1 + neural VAD 0.712 8.23

3 ResNet34 ID2 + mean vector
for test files 0.700 8.24

4 ResNet34 ID3 + more data
after VAD 0.688 8.26

5 ResNet34 ID4 + mean vector
substraction 0.672 8.22

6 ResNet34 ID5 + two mean
vector substraction 0.655 7.47

7 ResNet34 ID4 + fine-tune
model 0.562 4.85

8 ResNet34 ID7 + two mean
vector substraction 0.484 4.46

9 X-vectors Extended TDNN
+ energy VAD 0.890 12.30

10 ResNet34
ID1 + MultiReader,
mean vector for
test files

0.627 5.46

• the use of one of the adaptation methods described in
Subsection 1.4;

• computation of average test embedding vector for one
trial and comparison of it with the associated enrollment
embedding.

Analysis of results allows us to make the following conclu-
sions based on Table 3:

• expansion of the training set with the in-domain Chinese
Mandarin datasets allows to improve performance of ver-
ification system (ID7);

• the use of U-net-like VAD at training and testing stages
allows to improve the performance of verification sys-
tem. This gain is attributable to the fact that U-net-like
VAD produces more accurate speech detections in the
presence of distortions compared to energy-based VAD
(ID2);

• adaptation by one or two mean speaker embeddings sub-
traction allows to improve the performance of the verifi-
cation system. The two mean adaptation technique gives
special improvement as it accounts for the fact that en-
rollment and test recordings are formed using various de-
vices (ID6, ID8);

• the use of the MultiReader adaptation technique im-
proves the performance of the verification system. How-
ever, this approach requires careful selection of the learn-
ing rate (ID10);

• the use of multi-channel fusion approaches gives better
results than the comparison between enrollment embed-
ding and randomly selected test embedding for one trial.
We did not see much difference in the performance of
the verification system for different multi-channel fusion
approaches (ID2, ID3).



Table 4: Results of our best single and fused systems on FFSVC
2020 (development set and evaluation set)

System Task Dev set Eval set
Cmin

det EER Cmin
det EER

Single-1 Track 1 0.490 4.24 – –
Fusion-1 Track 1 0.462 3.66 0.500 5.08
Single-2 Track 2 0.484 4.46 0.564 5.61
Fusion-2 Track 2 0.472 4.28 0.541 5.39
Single-3 Track 3 0.434 3.35 – –
Fusion-3 Track 3 0.417 3.22 0.458 5.53

Table 5: Computation resources

System Real time factor Memory (MB)
ResNet34 (CPU) 14 248
ResNet34 (GPU) 233 248

We presented the best results of our single and fused verifi-
cation systems for all tracks in the Table 4. We used approaches
similar to Track 2 to improve the performance of the verifica-
tion system for Track 1 and Track 3. However, we used only
the text-dependent part of the FFSVC train set for adaptation in
Track 1 and Track 3 for better performance of our systems.

5. Computation resources
Processing times were measured on a machine with an In-
tel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz running Ubuntu
16.04 with the CUDA 10.1 release and equipped with NVIDIA
GeForce GTX 1080 Ti. Neural networks and tensor computa-
tions were constructed using the PyTorch package of version
1.5.0. A key computational bottleneck of the SR system is
an embedding extraction part. Therefore, we benchmarked our
best embedding extractors based on ResNet34 in terms of CPU
(single-threaded) and GPU execution times (Table 5). Table 5
also reports for the amount of memory required to process a
speech fragment of two seconds.

6. Conclusions
Obtained results confirm that deep ResNet architectures are ro-
bust and allow to obtain a good quality of speaker verification
for short-duration utterances. Our best performing system for
FFSVC 2020 (development set) protocols is ResNet34-based
system built on high-frequency resolution MFB features. It is
trained with AM-Softmax-based loss function. We should also
note that utilization of additional in-domain data, our U-net-like
VAD, various adaptation techniques, and multi-channel fusion
approaches provide additional performance gains for proposed
SR systems in considered tasks.
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